An Exploratory Analysis of Feature Selection for Malware Detection with Simple Machine Learning Algorithms

Computers have become increasingly vulnerable to malicious attacks with an increase in popularity and the proliferation of open system architectures. There are numerous malware detection technologies available to protect the computer operating system from such attacks. This type of malware detector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Communications Software and Systems 2023-09, Vol.19 (3), p.207-219
Hauptverfasser: Rahman, Md Ashikur, Islam, Syful, Nugroho, Yusuf Sulistyo, Al Irsyadi, Fatah Yasin, Hossain, Md Javed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computers have become increasingly vulnerable to malicious attacks with an increase in popularity and the proliferation of open system architectures. There are numerous malware detection technologies available to protect the computer operating system from such attacks. This type of malware detector targets programs based on patterns detected in the properties of computer applications. As the amount of analytical data increases, the computer defense system is adversely affected. The performance of the detection mechanism has been hindered due to the presence of numerous irrelevant characteristics. The goal of this study is to provide a feature selection approach that will help malware detection systems be more accurate by detecting pertinent and significant traits. Furthermore, by selecting the most important features, it is possible to maintain an acceptable level of accuracy in the detection of malware while significantly lowering the computational cost. The proposed method displays the most important features (MIFs) obtained from each machine learning method, including data cleaning and feature selection. Furthermore, the method applies six machine learning classification techniques to the selected feature set. Several classifiers were evaluated based on several characteristics for malware detection, including Support Vector Machines (SVM), Logistic Regression (LR), K-nearest neighbor (K-NN), Decision Tree (DT), Naive Bayes (NB), and Random Forest (RF). Our suggested model was tested on two malware datasets to determine its effectiveness. In terms of accuracy, precision, F1 scores, and recall, the experimental findings show that RF and DT classifiers beat other techniques.
ISSN:1845-6421
1846-6079
DOI:10.24138/jcomss-2023-0091