Tau N-Terminal Inserts Regulate Tau Liquid-Liquid Phase Separation and Condensates Maturation in a Neuronal Cell Model

The microtubule-associated protein tau can undergo liquid–liquid phase separation (LLPS) to form membraneless condensates in neurons, yet the underlying molecular mechanisms and functions of tau LLPS and tau droplets remain to be elucidated. The human brain contains mainly 6 tau isoforms with differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-09, Vol.22 (18), p.9728
Hauptverfasser: Wu, Chengchen, Zhao, Junyi, Wu, Qiuping, Tan, Qiulong, Liu, Qiong, Xiao, Shifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microtubule-associated protein tau can undergo liquid–liquid phase separation (LLPS) to form membraneless condensates in neurons, yet the underlying molecular mechanisms and functions of tau LLPS and tau droplets remain to be elucidated. The human brain contains mainly 6 tau isoforms with different numbers of microtubule-binding repeats (3R, 4R) and N-terminal inserts (0N, 1N, 2N). However, little is known about the role of N-terminal inserts. Here we observed the dynamics of three tau isoforms with different N-terminal inserts in live neuronal cell line HT22. We validated tau LLPS in cytoplasm and found that 2N-tau forms liquid-like, hollow-shell droplets. Tau condensates became smaller in 1N-tau comparing with 2N-tau, while no obvious tau accumulated dots were shown in 0N-tau. The absence of N-terminal inserts significantly affected condensate colocalization of tau and p62. The results reveal insights into the tau LLPS assembly mechanism and functional effects of N-terminal inserts in tau.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22189728