KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Agricultural nitrous oxide (N2O) emission accounts for a non-trivial fraction of global greenhouse gas (GHG) budget. To date, estimatingN2O fluxes from cropland remains a challenging task because the related microbial processes (e.g., nitrification and denitrification) are controlled by complex inte...
Gespeichert in:
Veröffentlicht in: | Geoscientific Model Development 2022-04, Vol.15 (7), p.2839-2858 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Agricultural nitrous oxide (N2O) emission accounts for a non-trivial fraction of global greenhouse gas (GHG) budget. To date, estimatingN2O fluxes from cropland remains a challenging task because the related microbial processes (e.g., nitrification and denitrification) are controlled by complex interactions among climate, soil, plant and human activities. Existing approaches such as process-based (PB) models have well-known limitations due to insufficient representations of the processes or uncertainties of model parameters, and due to leverage recent advances in machine learning (ML) a new method is needed to unlock the “black box” to overcome its limitations such as low interpretability, out-of-sample failure and massive data demand. In this study, we developed a first-of-its-kind knowledge-guided machine learning model for agroecosystems (KGML-ag) by incorporating biogeophysical and chemical domain knowledge from an advanced PB model, ecosys, and tested it by comparing simulating daily N2O fluxes with real observed data from mesocosm experiments. The gated recurrent unit (GRU) was used as the basis to build the model structure. To optimize the model performance, we have investigated a range of ideas, including (1) using initial values of intermediate variables (IMVs) instead of time series as model input to reduce data demand; (2) building hierarchical structures to explicitly estimate IMVs for further N2O prediction; (3) using multi-task learning to balance the simultaneous training on multiple variables; and (4) pre-training with millions of synthetic data generated from ecosys and fine-tuning with mesocosm observations. Six other pure ML models were developed using the same mesocosm data to serve as the benchmark for the KGML-ag model. Results show that KGML-ag did an excellent job in reproducing the mesocosmN2O fluxes (overall r2=0.81, and RMSE=3.6 mgNm-2d-1 from cross validation). Importantly, KGML-ag always outperforms the PB model and ML models in predicting N2O fluxes, especially for complex temporal dynamics and emission peaks. Besides, KGML-ag goes beyond the pure ML models by providing more interpretable predictions as well as pinpointing desired new knowledge and data to further empower the current KGML-ag. We believe the KGML-ag development in this study will stimulate a new body of research on interpretable ML for biogeochemistry and other related geoscience processes. |
---|---|
ISSN: | 1991-962X 1991-9603 1991-959X 1991-962X 1991-9603 |
DOI: | 10.5194/gmd-15-2839-2022 |