Simultaneous Catalytic Oxidation of Benzene and Toluene over Pd-CeZrOx Catalysts
Since actual industrial emissions contain a wide range of volatile organic compounds, studies into the simultaneous catalytic degradation of multi-component VOCs are essential. This work developed Pd-CeZrOx samples for the simultaneous elimination of benzene and toluene. Firstly, CeZrOx supports wer...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2024-11, Vol.15 (11), p.1301 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since actual industrial emissions contain a wide range of volatile organic compounds, studies into the simultaneous catalytic degradation of multi-component VOCs are essential. This work developed Pd-CeZrOx samples for the simultaneous elimination of benzene and toluene. Firstly, CeZrOx supports were synthesized using several methods (co-precipitation, CTAB template co-precipitation, and sol–gel method). Pd active species were then added into the 1.0Pd-CeZrOx samples using the impregnation procedure. XRD, BET, NH3-TPD, Raman, EPR, XPS, and H2-TPR were utilized to analyze the as-prepared Pd-CeZrOx samples. The catalytic performance tests reveal that the performance of 1.0Pd-CeZrOx-CTAB outperforms that of 1.0Pd-CeZrOx-PM and 1.0Pd-CeZrOx-CASG, and 1.0Pd-CeZrOx-CTAB displays superior catalytic activity for both benzene and toluene oxidation. The improved redox properties, the abundant surface oxygen vacancies, and the surface Pd2+ species of the 1.0Pd-CeZrOx-CTAB sample may be responsible for the simultaneous degradation activity of benzene and toluene. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos15111301 |