Bifurcation of Traveling Wave Solutions of the Dual Ito Equation
The dual Ito equation can be seen as a two-component generalization of the well-known Camassa-Holm equation. By using the theory of planar dynamical system, we study the existence of its traveling wave solutions. We find that the dual Ito equation has smooth solitary wave solutions, smooth periodic...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.896-904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dual Ito equation can be seen as a two-component generalization of the well-known Camassa-Holm equation. By using the theory of planar dynamical system, we study the existence of its traveling wave solutions. We find that the dual Ito equation has smooth solitary wave solutions, smooth periodic wave solutions, and periodic cusp solutions. Parameter conditions are given to guarantee the existence. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2014/153139 |