An Introduction to Independent Component Analysis: InfoMax and FastICA algorithms

This paper presents an introduction to independent component analysis (ICA). Unlike principal component analysis, which is based on the assumptions of uncorrelatedness and normality, ICA is rooted in the assumption of statistical independence. Foundations and basic knowledge necessary to understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tutorials in quantitative methods for psychology 2010-03, Vol.6 (1), p.31-38
Hauptverfasser: Langlois, Dominic, Chartier, Sylvain, Gosselin, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an introduction to independent component analysis (ICA). Unlike principal component analysis, which is based on the assumptions of uncorrelatedness and normality, ICA is rooted in the assumption of statistical independence. Foundations and basic knowledge necessary to understand the technique are provided hereafter. Also included is a short tutorial illustrating the implementation of two ICA algorithms (FastICA and InfoMax) with the use of the Mathematica software.
ISSN:1913-4126
1913-4126
DOI:10.20982/tqmp.06.1.p031