A Traffic Event Detection Method Based on Random Forest and Permutation Importance

Although the video surveillance system plays an important role in intelligent transportation, the limited camera views make it difficult to observe many traffic events. In this paper, we collect and combine the traffic flow variables from the multi-source sensors, and propose a PITED method based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-03, Vol.10 (6), p.873
Hauptverfasser: Su, Ziyi, Liu, Qingchao, Zhao, Chunxia, Sun, Fengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the video surveillance system plays an important role in intelligent transportation, the limited camera views make it difficult to observe many traffic events. In this paper, we collect and combine the traffic flow variables from the multi-source sensors, and propose a PITED method based on Random Forest (RF) and Permutation importance (PI) for traffic event detection. This model selects the suitable traffic flow variables by means of permutation arrangement of importance, and establishes the whole process of acquisition, preprocessing, quantization, modeling and evaluation. Moreover, the real traffic data are collected and tested in this paper for evaluating the experiment performance, including the miss/false rate of traffic event, and average detection time. The experimental results show that the detection rate is more than 85% and the false alarm rate is less than 3%. It means the model is effective and efficient in the practical application regardless of both workdays and holidays.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10060873