On the symmetrized S -divergence

In this paper we worked with the relative divergence of type s , s ∈ ℝ, which include Kullback-Leibler divergence and the Hellinger and χ 2 distances as particular cases. We give here a study of the sym- metrized divergences in additive and multiplicative forms. Some ba-sic properties as symmetry, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ITM Web of Conferences 2019, Vol.29, p.1004
1. Verfasser: Simić, Slavko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we worked with the relative divergence of type s , s ∈ ℝ, which include Kullback-Leibler divergence and the Hellinger and χ 2 distances as particular cases. We give here a study of the sym- metrized divergences in additive and multiplicative forms. Some ba-sic properties as symmetry, monotonicity and log-convexity are estab-lished. An important result from the Convexity Theory is also proved.
ISSN:2271-2097
2431-7578
2271-2097
DOI:10.1051/itmconf/20192901004