A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis

Ferroptosis is a type of lipid peroxidation-dependent cell death that is emerging as a therapeutic target for cancer. However, the mechanisms of ferroptosis during the generation and detoxification of lipid peroxidation products remain rather poorly defined. Here, we report an unexpected role for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.6318-6318, Article 6318
Hauptverfasser: Chen, Xin, Huang, Jun, Yu, Chunhua, Liu, Jiao, Gao, Wanli, Li, Jingbo, Song, Xinxin, Zhou, Zhuan, Li, Changfeng, Xie, Yangchun, Kroemer, Guido, Liu, Jinbao, Tang, Daolin, Kang, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferroptosis is a type of lipid peroxidation-dependent cell death that is emerging as a therapeutic target for cancer. However, the mechanisms of ferroptosis during the generation and detoxification of lipid peroxidation products remain rather poorly defined. Here, we report an unexpected role for the eukaryotic translation initiation factor EIF4E as a determinant of ferroptotic sensitivity by controlling lipid peroxidation. A drug screening identified 4EGI-1 and 4E1RCat (previously known as EIF4E-EIF4G1 interaction inhibitors) as powerful inhibitors of ferroptosis. Genetic and functional studies showed that EIF4E (but not EIF4G1) promotes ferroptosis in a translation-independent manner. Using mass spectrometry and subsequent protein-protein interaction analysis, we identified EIF4E as an endogenous repressor of ALDH1B1 in mitochondria. ALDH1B1 belongs to the family of aldehyde dehydrogenases and may metabolize the aldehyde substrate 4-hydroxynonenal (4HNE) at high concentrations. Supraphysiological levels of 4HNE triggered ferroptosis, while low concentrations of 4HNE increased the cell susceptibility to classical ferroptosis inducers by activating the NOX1 pathway. Accordingly, EIF4E-dependent ALDH1B1 inhibition enhanced the anticancer activity of ferroptosis inducers in vitro and in vivo. Our results support a key function of EIF4E in orchestrating lipid peroxidation to ignite ferroptosis. Ferroptosis is lipid peroxidation-dependent cell death that has potential to be harnessed as a cancer therapeutic. Here, the authors show that the translation initiation factor eIF4E can repress ALDH1B1 independent of translation, increasing lipid peroxidation levels to promote ferroptosis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-34096-w