On singularity of distribution of random variables with independent symbols of Oppenheim expansions

The paper is devoted to the restricted Oppenheim expansion of real numbers ($\mathit{ROE}$), which includes already known Engel, Sylvester and Lüroth expansions as partial cases. We find conditions under which for almost all (with respect to Lebesgue measure) real numbers from the unit interval thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern Stochastics: Theory and Applications 2017-10, Vol.4 (3), p.273-283
Hauptverfasser: Sydoruk, Liliia, Torbin, Grygoriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is devoted to the restricted Oppenheim expansion of real numbers ($\mathit{ROE}$), which includes already known Engel, Sylvester and Lüroth expansions as partial cases. We find conditions under which for almost all (with respect to Lebesgue measure) real numbers from the unit interval their $\mathit{ROE}$-expansion contain arbitrary digit i only finitely many times. Main results of the paper state the singularity (w.r.t. the Lebesgue measure) of the distribution of a random variable with i.i.d. increments of symbols of the restricted Oppenheim expansion. General non-i.i.d. case is also studied and sufficient conditions for the singularity of the corresponding probability distributions are found.
ISSN:2351-6046
2351-6054
DOI:10.15559/17-VMSTA87