A Communication-Efficient Distributed Matrix Multiplication Scheme with Privacy, Security, and Resiliency

Secure distributed matrix multiplication (SDMM) schemes are crucial for distributed learning algorithms where extensive data computation is distributed across multiple servers. Inspired by the application of repairing Reed-Solomon (RS) codes in distributed storage and secret sharing, we propose SDMM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2024-08, Vol.26 (9), p.743
Hauptverfasser: Wang, Tao, Shi, Zhiping, Yang, Juan, Liu, Sha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secure distributed matrix multiplication (SDMM) schemes are crucial for distributed learning algorithms where extensive data computation is distributed across multiple servers. Inspired by the application of repairing Reed-Solomon (RS) codes in distributed storage and secret sharing, we propose SDMM schemes with reduced communication overhead through the use of trace polynomials. Specifically, these schemes are designed to address three critical concerns: (i) ensuring information-theoretic privacy against collusion among servers; (ii) providing security against Byzantine servers; and (iii) offering resiliency against stragglers to mitigate computing delays. To the best of our knowledge, security and resiliency are being considered for the first time within trace polynomial-based approaches. Furthermore, our schemes offer the advantage of reduced sub-packetization and a lower server-count requirement, which diminish the computational complexity and download cost for the user.
ISSN:1099-4300
1099-4300
DOI:10.3390/e26090743