Interference Analysis for mmWave Automotive Radar Considering Blockage Effect

Due to the increasing number of vehicles equipped with millimeter wave (mmWave) radars, interference among automotive radars is becoming a major issue. This paper explores the automotive radar interference in both two-lane and multi-lane scenarios using stochastic geometry. We derive closed-form exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (12), p.3962
Hauptverfasser: Kui, Liping, Huang, Sai, Feng, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the increasing number of vehicles equipped with millimeter wave (mmWave) radars, interference among automotive radars is becoming a major issue. This paper explores the automotive radar interference in both two-lane and multi-lane scenarios using stochastic geometry. We derive closed-form expressions for mean and variance of interference power considering directional antenna with constant and Gaussian decaying gains. In view of the sensitivity of mmWave radar signals to the blockages, we propose a blockage model including partially and completely blocking, and then calculate the effective number of the interferers. By means of modeling randomness for interferers and blockages as Poisson point process, we characterize the statistics of radar interference under different conditions. We further utilize the interference characterization to estimate the successful ranging probability of automotive radars. These theoretical analyses are verified by using Monte Carlo simulations. The results show that the increasing interfering density and ranging distance largely degrade the radar detection performance, whereas the interference levels decrease as blockage intensity increases.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21123962