Advanced strategies for marine antifouling based on nanomaterial-enhanced functional PDMS coatings

Marine biofouling seriously affects human marine exploitation and transportation activities, to which marine antifouling (AF) coatings are considered to be the most cost-effective solution. Since the mid-20th century, human beings have dedicated their efforts on developing AF coatings with long cycl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano materials science 2024-08, Vol.6 (4), p.375-395
Hauptverfasser: Shi, Xiaohui, Wei, Hao, Zhou, Wenjun, Soto Rodriguez, Paul E.D., Lin, Cunguo, Wang, Lei, Zhang, Zhijia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marine biofouling seriously affects human marine exploitation and transportation activities, to which marine antifouling (AF) coatings are considered to be the most cost-effective solution. Since the mid-20th century, human beings have dedicated their efforts on developing AF coatings with long cycle and high performance, leading to a large number of non-target organisms' distortion, death and marine environmental pollution. Polydimethylsiloxane (PDMS), is considered as one of the representative environment-friendly AF materials thanks to its non-toxic, hydrophobic, low surface energy and AF properties. However, PDMS AF coatings are prone to mechanical damage, weak adhesion strength to substrate, and poor static AF effect, which seriously restrict their use in the ocean. The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials. Based on our research background and the problems faced in our laboratory, this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials, with the discussion focused on the advantages and main bottlenecks currently encountered in this field. Finally, we propose an outlook, hoping to provide fundamental guidance for the development of marine AF field.
ISSN:2589-9651
2096-6482
2589-9651
DOI:10.1016/j.nanoms.2023.12.005