A New Low SNR Underwater Acoustic Signal Classification Method Based on Intrinsic Modal Features Maintaining Dimensionality Reduction

The classification of low signal-to-noise ratio (SNR) underwater acoustic signals in complex acoustic environments and increasingly small target radiation noise is a hot research topic.. This paper proposes a new method for signal processing—low SNR underwater acoustic signal classification method (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polish maritime research 2020-06, Vol.27 (2), p.187-198
Hauptverfasser: Ju, Yang, Wei, Zhengxian, Huangfu, Li, Xiao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classification of low signal-to-noise ratio (SNR) underwater acoustic signals in complex acoustic environments and increasingly small target radiation noise is a hot research topic.. This paper proposes a new method for signal processing—low SNR underwater acoustic signal classification method (LSUASC)—based on intrinsic modal features maintaining dimensionality reduction. Using the LSUASC method, the underwater acoustic signal was first transformed with the Hilbert-Huang Transform (HHT) and the intrinsic mode was extracted. the intrinsic mode was then transformed into a corresponding Mel-frequency cepstrum coefficient (MFCC) to form a multidimensional feature vector of the low SNR acoustic signal. Next, a semi-supervised fuzzy rough Laplacian Eigenmap (SSFRLE) method was proposed to perform manifold dimension reduction (local sparse and discrete features of underwater acoustic signals can be maintained in the dimension reduction process) and principal component analysis (PCA) was adopted in the process of dimension reduction to define the reduced dimension adaptively. Finally, Fuzzy C-Means (FCMs), which are able to classify data with weak features was adopted to cluster the signal features after dimensionality reduction. The experimental results presented here show that the LSUASC method is able to classify low SNR underwater acoustic signals with high accuracy.
ISSN:2083-7429
1233-2585
2083-7429
DOI:10.2478/pomr-2020-0040