Existence of Asymptotically Almost Automorphic Mild Solutions of Semilinear Fractional Differential Equations

This paper is concerned with the existence of asymptotically almost automorphic mild solutions to a class of abstract semilinear fractional differential equations D t α x t = A x t + D t α - 1 F t , x t , B x t , t ∈ R , where 1 < α < 2 , A is a linear densely defined operator of sectorial typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of differential equations 2018-01, Vol.2018 (2018), p.1-23
Hauptverfasser: Cao, Junfei, N'Guérékata, Gaston M., Huang, Zaitang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the existence of asymptotically almost automorphic mild solutions to a class of abstract semilinear fractional differential equations D t α x t = A x t + D t α - 1 F t , x t , B x t , t ∈ R , where 1 < α < 2 , A is a linear densely defined operator of sectorial type on a complex Banach space X and B is a bounded linear operator defined on X , F is an appropriate function defined on phase space, and the fractional derivative is understood in the Riemann-Liouville sense. Combining the fixed point theorem due to Krasnoselskii and a decomposition technique, we prove the existence of asymptotically almost automorphic mild solutions to such problems. Our results generalize and improve some previous results since the (locally) Lipschitz continuity on the nonlinearity F is not required. The results obtained are utilized to study the existence of asymptotically almost automorphic mild solutions to a fractional relaxation-oscillation equation.
ISSN:1687-9643
1687-9651
DOI:10.1155/2018/8243180