Poly(aspartic acid) Electrospun Nanofiber Hydrogel Membrane-Based Reusable Colorimetric Sensor for Cu(II) and Fe(III) Detection

Electrospun nanofiber membrane (ENM) with huge specific surface area is an ideal solid substrate for sensors. However, only a few ENMs are developed into colorimetric sensors and it is even more challenging to fabricate multiple-ion-responsive ENM-based colorimetric sensor. In this study, benefiting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2019-09, Vol.4 (11), p.14633-14639
Hauptverfasser: Zhang, Caidan, Li, Haidong, Yu, Qiaozhen, Jia, Lin, Wan, Lynn Yuqin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrospun nanofiber membrane (ENM) with huge specific surface area is an ideal solid substrate for sensors. However, only a few ENMs are developed into colorimetric sensors and it is even more challenging to fabricate multiple-ion-responsive ENM-based colorimetric sensor. In this study, benefiting from the excellent metal ion adsorption ability of poly­(aspartic acid) (PASP) and high specific surface area of nanofibers, a reusable colorimetric sensor utilizing PASP electrospun nanofiber hydrogel membrane (ENHM) was designed to detect Cu2+ and Fe3+ in aqueous solution with simple filtration. The sensor based on PASP–ENHM exhibited high sensitivity and selectivity, and colorimetric responses for Cu2+ and Fe3+ detection could be observed by the naked eye. Upon exposure to Cu2+ aqueous solution, the color of the sensor changed from white to blue with a naked eye detection limit of 0.3 mg/L, while it turned from white to yellow with a detection limit of 0.1 mg/L for Fe3+ detection. Furthermore, this sensor was reusable after metal ion extraction by the desorption process.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b02109