Poly(aspartic acid) Electrospun Nanofiber Hydrogel Membrane-Based Reusable Colorimetric Sensor for Cu(II) and Fe(III) Detection
Electrospun nanofiber membrane (ENM) with huge specific surface area is an ideal solid substrate for sensors. However, only a few ENMs are developed into colorimetric sensors and it is even more challenging to fabricate multiple-ion-responsive ENM-based colorimetric sensor. In this study, benefiting...
Gespeichert in:
Veröffentlicht in: | ACS omega 2019-09, Vol.4 (11), p.14633-14639 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrospun nanofiber membrane (ENM) with huge specific surface area is an ideal solid substrate for sensors. However, only a few ENMs are developed into colorimetric sensors and it is even more challenging to fabricate multiple-ion-responsive ENM-based colorimetric sensor. In this study, benefiting from the excellent metal ion adsorption ability of poly(aspartic acid) (PASP) and high specific surface area of nanofibers, a reusable colorimetric sensor utilizing PASP electrospun nanofiber hydrogel membrane (ENHM) was designed to detect Cu2+ and Fe3+ in aqueous solution with simple filtration. The sensor based on PASP–ENHM exhibited high sensitivity and selectivity, and colorimetric responses for Cu2+ and Fe3+ detection could be observed by the naked eye. Upon exposure to Cu2+ aqueous solution, the color of the sensor changed from white to blue with a naked eye detection limit of 0.3 mg/L, while it turned from white to yellow with a detection limit of 0.1 mg/L for Fe3+ detection. Furthermore, this sensor was reusable after metal ion extraction by the desorption process. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.9b02109 |