Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH Models: Foreign Exchange Market Forecast
This article discusses a comparison of the GARCH and EGARCH conditional variance methods, with respect to the Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH. The returns of four exchange rates were forecasted at daily periodicity from January 2015 to November 2022 and out-of-sample, January 2019, an...
Gespeichert in:
Veröffentlicht in: | Revista mexicana de economía y finanzas = Mexican journal of economics and finance : REMEF 2023-07, Vol.18 (3), p.1-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article discusses a comparison of the GARCH and EGARCH conditional variance methods, with respect to the Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH. The returns of four exchange rates were forecasted at daily periodicity from January 2015 to November 2022 and out-of-sample, January 2019, and December 2022. The results indicate that the Fuzzy GARCH and Fuzzy EGARCH models better estimate the volatility behaviour of the exchange market series compared to traditional techniques. Therefore, the recommendation is to estimate other high volatility variables to verify the efficiency of the fuzzy techniques, however, the main limitation is that it is not possible to apply traditional econometric tests for fuzzy techniques because the parameters are not estimated with the logarithm of maximum likelihood. The estimation of the parameters of GARCH and EGARCH models with fuzzy theory is the originality proposal. In conclusion, fuzzy methodologies have less error in forecasting the volatility of in-sample and out-of-sample exchange rates. |
---|---|
ISSN: | 1665-5346 2448-6795 2448-6795 |
DOI: | 10.21919/remef.v18i3.855 |