Quercetin prevents primordial follicle loss via suppression of PI3K/Akt/Foxo3a pathway activation in cyclophosphamide-treated mice

Chemotherapy improves the survival rates of patients with various cancers but often causes some adverse effects, including ovarian damage, characterised by a decrease in primordial follicle stockpiles. Recent studies have revealed that chemotherapy may stimulate the PI3K signalling pathway, thereby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproductive biology and endocrinology 2021-04, Vol.19 (1), p.63-63, Article 63
Hauptverfasser: Li, Jianghui, Long, Hui, Cong, Yanyan, Gao, Hongyuan, Lyu, Qifeng, Yu, Sha, Kuang, Yanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemotherapy improves the survival rates of patients with various cancers but often causes some adverse effects, including ovarian damage, characterised by a decrease in primordial follicle stockpiles. Recent studies have revealed that chemotherapy may stimulate the PI3K signalling pathway, thereby resulting in accelerated primordial follicle activation and a decreased ovarian reserve. Quercetin is an inhibitor of the PI3K pathway; however, its protective effects against chemotherapy-induced follicle loss in mice have not been established. In this study, the effects of quercetin in a mouse model of cyclophosphamide-induced ovarian dysfunction were investigated. C57BL/6 female mice were used for the study. Paraffin sections of mouse ovaries (n = 30 mice) were stained with haematoxylin and eosin for differential follicle counts. Apoptosis (n = 5 mice per group) was evaluated by TUNEL assay. Immunohistochemical staining for ki67 and Foxo3a (n = 5 mice per group) was performed to evaluate the activation of primordial follicles. The role of the PI3K signalling pathway in the ovaries (n = 45 mice) was assessed by western blotting. Quercetin attenuated the cyclophosphamide-induced reduction in dormant primordial follicles. Analysis of the PI3K/Akt/Foxo3a pathway showed that quercetin decreased the phosphorylation of proteins that stimulate follicle activation in cyclophosphamide-induced ovaries. Furthermore, quercetin prevented cyclophosphamide-induced apoptosis in early growing follicles and early antral follicles, maintained anti-Müllerian hormone levels secreted by these follicles, and preserved the quiescence of the primordial follicle pool, as determined by intranuclear Foxo3a staining. Quercetin attenuates cyclophosphamide-induced follicle loss by preventing the phosphorylation of PI3K/Akt/Foxo3a pathway members and maintaining the anti-Müllerian hormone level through reduced apoptosis in growing follicles. Accordingly, quercetin is expected to improve fertility preservation and the prevention of endocrine-related side effects of chemotherapy.
ISSN:1477-7827
1477-7827
DOI:10.1186/s12958-021-00743-y