Application of offset estimator of differential entropy and mutual information with multivariate data

Numerical estimators of differential entropy and mutual information can be slow to converge as sample size increases. The offset Kozachenko–Leonenko (KLo) method described here implements an offset version of the Kozachenko–Leonenko estimator that can markedly improve convergence. Its use is illustr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental Results 2022, Vol.3, Article e16
Hauptverfasser: Marín-Franch, Iván, Sanz-Sabater, Martín, Foster, David H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical estimators of differential entropy and mutual information can be slow to converge as sample size increases. The offset Kozachenko–Leonenko (KLo) method described here implements an offset version of the Kozachenko–Leonenko estimator that can markedly improve convergence. Its use is illustrated in applications to the comparison of trivariate data from successive scene color images and the comparison of univariate data from stereophonic music tracks. Publicly available code for KLo estimation of both differential entropy and mutual information is provided for R, Python, and MATLAB computing environments at https://github.com/imarinfr/klo .
ISSN:2516-712X
2516-712X
DOI:10.1017/exp.2022.14