Positive solutions of a second-order nonlinear Robin problem involving the first-order derivative

This paper is concerned with the second-order nonlinear Robin problem involving the first-order derivative: { u ″ + f ( t , u , u ′ ) = 0 , u ( 0 ) = u ′ ( 1 ) − α u ( 1 ) = 0 , where f ∈ C ( [ 0 , 1 ] × R + 2 , R + ) and α ∈ ] 0 , 1 [ . Based on a priori estimates, we use fixed point index theory t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2021-06, Vol.2021 (1), p.1-16, Article 313
1. Verfasser: Yang, Zhilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the second-order nonlinear Robin problem involving the first-order derivative: { u ″ + f ( t , u , u ′ ) = 0 , u ( 0 ) = u ′ ( 1 ) − α u ( 1 ) = 0 , where f ∈ C ( [ 0 , 1 ] × R + 2 , R + ) and α ∈ ] 0 , 1 [ . Based on a priori estimates, we use fixed point index theory to establish some results on existence, multiplicity and uniqueness of positive solutions thereof, with the unique positive solution being the limit of of an iterative sequence. The results presented here generalize and extend the corresponding ones for nonlinearities independent of the first-order derivative.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03465-y