L-DOPA regulates neuroinflammation and Aβ pathology through NEP and ADAM17 in a mouse model of AD

Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular brain 2024-04, Vol.17 (1), p.21-21, Article 21
Hauptverfasser: Lee, Hyun-Ju, Nam, JinHan, Hwang, Jeong-Woo, Park, Jin-Hee, Jeong, Yoo Joo, Jang, Ji-Yeong, Kim, Su-Jeong, Jo, A-Ran, Hoe, Hyang-Sook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aβ/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aβ pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aβ plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aβ pathology but not tau pathology in this mouse model of AD.
ISSN:1756-6606
1756-6606
DOI:10.1186/s13041-024-01092-8