Speed Grade Evaluation of Public-Transportation Lines Based on an Improved T-S Fuzzy Neural Network

This paper proposes an evaluation method based on a T-S fuzzy neural network for evaluating the speed grade of public-transport lines in the context of large-scale rail-transit planning and construction in Hangzhou. The six-dimensional data of morning peak/evening peak average speed, average speed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2020-11, Vol.2020 (2020), p.1-13
Hauptverfasser: Wu, Jin, Zhong, Biqiang, Li, Peiqing, Zhang, Shunfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an evaluation method based on a T-S fuzzy neural network for evaluating the speed grade of public-transport lines in the context of large-scale rail-transit planning and construction in Hangzhou. The six-dimensional data of morning peak/evening peak average speed, average speed at peak, average station distance, proportion of dedicated lanes, and nonlinear coefficients were selected as input data for the neural network to output the operating speed grade of bus lines. Improving and optimizing the membership function of the Takagi–Sugeno (T-S) model improves its predicted result accuracy compared to a traditional T-S model. The line data of 28 typical trunk lines or expressways in Hangzhou were used as an example; the results demonstrate that the speed grade evaluation method based on an improved T-S fuzzy neural network can effectively and quickly evaluate the speed grade of Hangzhou public-transportation lines. This paper presents a novel analysis and method for large-scale rail-transit planning and evaluation of urban public-transport lines. The aim is to provide practical instruction for the subsequent optimization of public-transportation lines in Hangzhou.
ISSN:0197-6729
2042-3195
DOI:10.1155/2020/8838084