A Bayesian decision support sequential model for severity of illness predictors and intensive care admissions in pneumonia

Community-acquired pneumonia (CAP) is one of the leading causes of morbidity and mortality in the USA. Our objective was to assess the predictive value on critical illness and disposition of a sequential Bayesian Model that integrates Lactate and procalcitonin (PCT) for pneumonia. Sensitivity and sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medical informatics and decision making 2019-12, Vol.19 (1), p.284-284, Article 284
Hauptverfasser: Baez, Amado Alejandro, Cochon, Laila, Nicolas, Jose Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Community-acquired pneumonia (CAP) is one of the leading causes of morbidity and mortality in the USA. Our objective was to assess the predictive value on critical illness and disposition of a sequential Bayesian Model that integrates Lactate and procalcitonin (PCT) for pneumonia. Sensitivity and specificity of lactate and PCT attained from pooled meta-analysis data. Likelihood ratios calculated and inserted in Bayesian/ Fagan nomogram to calculate posttest probabilities. Bayesian Diagnostic Gains (BDG) were analyzed comparing pre and post-test probability. To assess the value of integrating both PCT and Lactate in Severity of Illness Prediction we built a model that combined CURB65 with PCT as the Pre-Test markers and later integrated the Lactate Likelihood Ratio Values to generate a combined CURB 65 + Procalcitonin + Lactate Sequential value. The BDG model integrated a CUBR65 Scores combined with Procalcitonin (LR+ and LR-) for Pre-Test Probability Intermediate and High with Lactate Positive Likelihood Ratios. This generated for the PCT LR+ Post-test Probability (POSITIVE TEST) Posterior probability: 93% (95% CI [91,96%]) and Post Test Probability (NEGATIVE TEST) of: 17% (95% CI [15-20%]) for the Intermediate subgroup and 97% for the high risk sub-group POSITIVE TEST: Post-Test probability:97% (95% CI [95,98%]) NEGATIVE TEST: Post-test probability: 33% (95% CI [31,36%]) . ANOVA analysis for CURB 65 (alone) vs CURB 65 and PCT (LR+) vs CURB 65 and PCT (LR+) and Lactate showed a statistically significant difference (P value = 0.013). The sequential combination of CURB 65 plus PCT with Lactate yielded statistically significant results, demonstrating a greater predictive value for severity of illness thus ICU level care.
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-019-1015-5