Generalization of Reset Controllers to Fractional Orders
Reset control is a simple non-linear control technique that can help overcome the structural limitations of linear control. Fractional control uses the concept of fractional derivatives to expand the range of possibilities when modeling a controller, making it more robust. Fractional reset control m...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-12, Vol.10 (24), p.4630 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reset control is a simple non-linear control technique that can help overcome the structural limitations of linear control. Fractional control uses the concept of fractional derivatives to expand the range of possibilities when modeling a controller, making it more robust. Fractional reset control merges the advantages of both areas and is the object of this paper. Fractional-order versions of different reset controllers were implemented, namely a fractional Clegg integrator, a fractional generalized first-order reset element, a fractional generalized second-order reset element, and fractional “constant in gain lead in phase” controllers with first- and second-order reset elements. These were computed directly from a numerical implementation of the Grünwald–Letnikov definition of fractional derivatives, and their performances were analyzed. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10244630 |