Generalization of Reset Controllers to Fractional Orders

Reset control is a simple non-linear control technique that can help overcome the structural limitations of linear control. Fractional control uses the concept of fractional derivatives to expand the range of possibilities when modeling a controller, making it more robust. Fractional reset control m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-12, Vol.10 (24), p.4630
Hauptverfasser: Paz, Henrique, Valério, Duarte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reset control is a simple non-linear control technique that can help overcome the structural limitations of linear control. Fractional control uses the concept of fractional derivatives to expand the range of possibilities when modeling a controller, making it more robust. Fractional reset control merges the advantages of both areas and is the object of this paper. Fractional-order versions of different reset controllers were implemented, namely a fractional Clegg integrator, a fractional generalized first-order reset element, a fractional generalized second-order reset element, and fractional “constant in gain lead in phase” controllers with first- and second-order reset elements. These were computed directly from a numerical implementation of the Grünwald–Letnikov definition of fractional derivatives, and their performances were analyzed.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10244630