Potential anti-adipogenic activity of Calligonum comosum cuminaldehyde on mouse 3T3-pre-adipocytes
Background: Obesity is a medical condition characterized by augmented body fat mass that can adversely affect human health. Several regimens were suggested to counteract obesity and fat accumulation with limited success. As plants are well-known source of medicinal products, we studied the potential...
Gespeichert in:
Veröffentlicht in: | Advances in Biomedical and Health Sciences 2023-01, Vol.2 (1), p.23-30 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Obesity is a medical condition characterized by augmented body fat mass that can adversely affect human health. Several regimens were suggested to counteract obesity and fat accumulation with limited success. As plants are well-known source of medicinal products, we studied the potential anti-adipogenic activity of the essential oil extracted from Calligonum comosum plants growing in the desert of the United Arab Emirates. Methods: C. comosum essential oil was extracted and fractionated on thin layer chromatography. The effect of total oil extract, the major compound-rich fraction, and the pure compound (cuminaldehyde) were tested on the viability, lipid content, and glucose uptake of 3T3-L1 cells. The capability of cuminaldehyde to reduce the formation of 3D-adipocyte pellets and expression of related transcripts was also tested. Results: The results showed that C. comosum essential oil, particularly its major component cuminaldehyde, caused a significant reduction in the viability of 3T3-L1 cells when compared with fibroblasts, employed as controls. Furthermore, cuminaldehyde caused a significant reduction in the lipid content of 3T3 cells, as determined by Nile red stain, reduction in the glucose uptake, and reduction in the levels of both triglycerides and cholesterol. Moreover, cuminaldehyde significantly reduced the formation of 3D-adipocyte pellets and the expression of adipocyte-specific transcripts, CAAT-enhancer binding protein-alpha, and peroxisome proliferator-activated receptor-gamma. Conclusion: Taken together, these results demonstrated a potential inhibition of lipid accumulation in 3T3 adipocytes after treatment with cuminaldehyde extracted from C. comosum oil. Thus, cuminaldehyde can be considered as a new potential anti-adipogenic agent for the prevention and treatment of obesity. |
---|---|
ISSN: | 2773-1545 2773-1553 |
DOI: | 10.4103/abhs.abhs_40_22 |