Structure and thermodynamics of the primitive model electrolyte in a charged matrix: The evaluation of the Madden-Glandt approximation

We compared the results of the Madden-Glandt (MG) integral equation approximation for partly-quenched systems with the commonly accepted formalism of Given and Stell (GS). A studied system was a +1:-1 restricted primitive model (RPM) electrolyte confined in a quenched +1:-1 RPM matrix. A renormaliza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Condensed matter physics 2013, Vol.16 (4), p.43803
1. Verfasser: Luksic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compared the results of the Madden-Glandt (MG) integral equation approximation for partly-quenched systems with the commonly accepted formalism of Given and Stell (GS). A studied system was a +1:-1 restricted primitive model (RPM) electrolyte confined in a quenched +1:-1 RPM matrix. A renormalization scheme was proposed for the set of MG replica Ornstein-Zernike equations. Long-ranged direct and total correlation functions, describing the interactions between the annealed electrolyte species within the same replicas and between the annealed and matrix particles, appeared to be the same for MG and GS approach. Both versions of the theory give very similar results for the structure and thermodynamics of an annealed subsystem. Differences between excess internal energy, excess chemical potential, and isothermal compressibility become pronounced only at high concentrations of matrix particles.
ISSN:1607-324X
DOI:10.5488/CMP.16.43803