Instantaneous equilibrium transition for Brownian systems under time-dependent temperature and potential variations: Reversibility, heat and work relations, and fast isentropic process

The theory of constructing instantaneous equilibrium (ieq) transition under arbitrary time-dependent temperature and potential variation for a Brownian particle is developed. It is shown that it is essential to consider the underdamped dynamics for temperature-changing transitions. The ieq is mainta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2021-08, Vol.3 (3), p.033130, Article 033130
Hauptverfasser: Jun, Yonggun, Lai, Pik-Yin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theory of constructing instantaneous equilibrium (ieq) transition under arbitrary time-dependent temperature and potential variation for a Brownian particle is developed. It is shown that it is essential to consider the underdamped dynamics for temperature-changing transitions. The ieq is maintained by a time-dependent auxiliary position and momentum potential, which can be calculated for given time-dependent transition protocols. Explicit analytic results are derived for the work and heat statistics, energy, and entropy changes for harmonic and non-harmonic trapping potential with arbitrary time-dependent potential parameters and temperature protocols. Numerical solutions of the corresponding Langevin dynamics are computed to confirm the theoretical results. Although ieq transition of the reverse process is not the time-reversal of the ieq transition of the forward process due to the odd-parity of controlling parameters, their phase-space distribution functions restore the time-reversal symmetry, and hence the energy and entropy changes of the ieq of the reverse process are simply the negative of that of the forward process. Furthermore, it is shown that it is possible to construct an ieq transition that has zero entropy change at a finite transition rate, i.e., a fast ieq isentropic process, and is further demonstrated by explicit Langevin dynamics simulations. Our theory provides fundamental building blocks for designing controlled microscopic heat engine cycles. Implications for constructing an efficient Brownian heat engine are also discussed.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.3.033130