Utilization of Ananas comosus Crown Residue Husk as a Sustainable Strength Additive for EPR/LDPE Blend Composites

The utilization of waste generated by natural resources is a crucial problem nowadays. The current study describes the utilization of pineapple (Ananas comosus) crown residue husk (PCRh) as a strength additive for low-density polyethylene (LDPE) and ethylene propylene rubber (EPR) composites. The bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-01, Vol.9 (2), p.2740-2751
Hauptverfasser: Kumar, Jitendra, Kumar, Anuj, Maurya, Atul Kumar, Gupta, Hariome Sharan, Singh, Surendra Pal, Sharma, Chhaya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The utilization of waste generated by natural resources is a crucial problem nowadays. The current study describes the utilization of pineapple (Ananas comosus) crown residue husk (PCRh) as a strength additive for low-density polyethylene (LDPE) and ethylene propylene rubber (EPR) composites. The blend composites with 30% husk, 10 wt % EPR, and 60% LDPE content showed much better mechanical properties, such as tensile strength and flexural properties, than pristine LDPE and its binary composite with 10 wt % EPR. The high tensile strength (∼19.28 MPa) and tensile modulus (522.97 MPa) were obtained for the composite consisting of 30 wt % PCRh in the basic polymer matrix. Similarly, the highest flexural strength (∼18.09 MPa) and modulus (∼790.29 MPa) were recorded for the same composition. The incorporation of PCRh with LDPE and EPR was further characterized by attenuated total reflection–Fourier transform infrared, differential scanning calorimetry, field emission scanning electron microscopy, dynamic mechanical analysis, and a universal testing machine to evaluate its impact on various properties.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c07697