Conducting the RBD of SARS-CoV-2 Omicron Variant with Phytoconstituents from Euphorbia dendroides to Repudiate the Binding of Spike Glycoprotein Using Computational Molecular Search and Simulation Approach

(1) Background: Natural constituents are still a preferred route for counteracting the outbreak of COVID-19. Essentially, flavonoids have been found to be among the most promising molecules identified as coronavirus inhibitors. Recently, a new SARS-CoV-2 B.1.1.529 variant has spread in many countrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-05, Vol.27 (9), p.2929
Hauptverfasser: Hassan, Heba Ali, Hassan, Ahmed R, Mohamed, Eslam A R, Al-Khdhairawi, Ahmad, Karkashan, Alaa, Attar, Roba, Allemailem, Khaled S, Al Abdulmonem, Waleed, Shimizu, Kuniyoshi, Abdel-Rahman, Iman A M, Allam, Ahmed E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1) Background: Natural constituents are still a preferred route for counteracting the outbreak of COVID-19. Essentially, flavonoids have been found to be among the most promising molecules identified as coronavirus inhibitors. Recently, a new SARS-CoV-2 B.1.1.529 variant has spread in many countries, which has raised awareness of the role of natural constituents in attempts to contribute to therapeutic protocols. (2) Methods: Using various chromatographic techniques, triterpenes ( - ), phenolics ( - ), and flavonoids ( - ) were isolated from and computationally screened against the receptor-binding domain (RBD) of the SARS-CoV-2 Omicron variant. As a first step, molecular docking calculations were performed for all investigated compounds. Promising compounds were subjected to molecular dynamics simulations (MD) for 200 ns, in addition to molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) to determine binding energy. (3) Results: MM/PBSA binding energy calculations showed that compound (quercetin-3- -β-D-glucuronopyranoside) and compound (quercetin-3- -glucuronide 6″- -methyl ester) exhibited strong inhibition of Omicron, with Δ of -41.0 and -32.4 kcal/mol, respectively. Finally, drug likeness evaluations based on Lipinski's rule of five also showed that the discovered compounds exhibited good oral bioavailability. (4) Conclusions: It is foreseeable that these results provide a novel intellectual contribution in light of the decreasing prevalence of SARS-CoV-2 B.1.1.529 and could be a good addition to the therapeutic protocol.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27092929