Structural Insights of Three 2,4-Disubstituted Dihydropyrimidine-5-carbonitriles as Potential Dihydrofolate Reductase Inhibitors
In this report, we describe the structural characterization of three 2,4-disubstituted-dihydropyrimidine-5-carbonitrile derivatives, namely 2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-4-propyl-1,6-dihydropyrimidine-5-carbonitrile 1, 4-(2-methylpropyl)-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihy...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2021-05, Vol.26 (11), p.3286 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this report, we describe the structural characterization of three 2,4-disubstituted-dihydropyrimidine-5-carbonitrile derivatives, namely 2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-4-propyl-1,6-dihydropyrimidine-5-carbonitrile 1, 4-(2-methylpropyl)-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile 2, and 2-[(2-ethoxyethyl)sulfanyl]-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitrile monohydrate 3. An X-ray diffraction analysis revealed that these compounds were crystallized in the centrosymmetric space groups and adopt an L-shaped conformation. One of the compounds (3) crystallized with a water molecule. A cyclic motif (R22(8)) mediated by N–H···O hydrogen bond was formed in compounds 1 and 2, whereas the corresponding motif was not favorable, due to the water molecule, in compound 3. The crystal packing of these compounds was analyzed based on energy frameworks performed at the B3LYP/6-31G(d,p) level of theory. Various inter-contacts were characterized using the Hirshfeld surface and its associated 2D-fingerprint plots. Furthermore, a molecular docking simulation was carried out to assess the inhibitory potential of the title compounds against the human dihydrofolate reductase (DHFR) enzyme. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26113286 |