Two-Dimensional Metal-Organic Framework Incorporated Highly Polar PVDF for Dielectric Energy Storage and Mechanical Energy Harvesting

Here, we introduce a 2D metal-organic framework (MOF) into the poly(vinylidene fluoride) (PVDF) matrix, which has been comparatively less explored in this field. Highly 2D Ni-MOF has been synthesized in this regard via hydrothermal route and has been incorporated into PVDF matrix via solvent casting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-03, Vol.13 (6), p.1098
Hauptverfasser: Sasmal, Abhishek, Senthilnathan, Jaganathan, Arockiarajan, Arunachalakasi, Yoshimura, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we introduce a 2D metal-organic framework (MOF) into the poly(vinylidene fluoride) (PVDF) matrix, which has been comparatively less explored in this field. Highly 2D Ni-MOF has been synthesized in this regard via hydrothermal route and has been incorporated into PVDF matrix via solvent casting technique with ultralow filler (0.5 wt%) loading. The polar phase percentage of 0.5 wt% Ni-MOF loaded PVDF film (NPVDF) has been found to be increased to ~85% from a value of ~55% for neat PVDF. The ultralow filler loading has inhibited the easy breakdown path along with increased dielectric permittivity and hence has enhanced the energy storage performance. On the other hand, significantly enriched polarity and Young's Modulus has helped in improving its mechanical energy harvesting performance, thereby enhancing the human motion interactive sensing activities. The piezoelectric and piezo-tribo hybrid devices made up of NPVDF film have shown improved output power density of ~3.26 and 31 μW/cm compared to those of the piezoelectric and piezo-tribo hybrid devices comprising of neat PVDF (output power density ~0.6 and 17 μW/cm , respectively). The developed composite can thus be considered an excellent candidate for multifunctional applications.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13061098