Model-based cloud service deployment optimisation method for minimisation of application service operational cost
Many currently existing cloud cost optimisation solutions are aimed at cloud infrastructure providers, and they often deal only with specific types of application services. Unlike infrastructure providers, the providers of cloud applications are often left without a suitable cost optimisation soluti...
Gespeichert in:
Veröffentlicht in: | Journal of Cloud Computing 2023-12, Vol.12 (1), p.23-32, Article 23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many currently existing cloud cost optimisation solutions are aimed at cloud infrastructure providers, and they often deal only with specific types of application services. Unlike infrastructure providers, the providers of cloud applications are often left without a suitable cost optimisation solution, especially concerning the wide range of different application types. This paper presents an approach that aims to provide an optimisation solution for the providers of applications hosted in the cloud environments, applicable at the early phase of a cloud application lifecycle and for a wide range of application services. The focus of this research is the development of the method for identifying optimised service deployment option in available cloud environments based on the model of the service and its context, intending to minimise the operational cost of the cloud service while fulfilling the requirements defined by the service level agreement. A cloud application context metamodel is proposed that includes parameters related to both the application service and the cloud infrastructure relevant for the cost and quality of service. By using the proposed optimisation method, knowledge is gained about the effects of the cloud application context parameters on the service cost and quality of service, which is then used to determine the optimal service deployment option. The service models are validated using cloud applications deployed in laboratory conditions, and the optimisation method is validated using the simulations based on the proposed cloud application context metamodel. The experimental results based on two cloud application services demonstrate the ability of the proposed approach to provide relevant information about the impact of cloud application context parameters on service cost and quality of service and use this information for reducing service operational cost while preserving the acceptable service quality level. The results indicate the applicability and relevance of the proposed approach for cloud applications in the early service lifecycle phase since application providers can gain valuable insights regarding service deployment decision without acquiring extensive datasets for the analysis. |
---|---|
ISSN: | 2192-113X 2192-113X |
DOI: | 10.1186/s13677-023-00389-8 |