Beta-Diversity Modeling and Mapping with LiDAR and Multispectral Sensors in a Semi-Evergreen Tropical Forest

Tree beta-diversity denotes the variation in species composition at stand level, it is a key indicator of forest degradation, and is conjointly required with alpha-diversity for management decision making but has seldom been considered. Our aim was to map it in a continuous way with remote sensing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2019-05, Vol.10 (5), p.419
Hauptverfasser: Ochoa-Franco, Alejandra, Valdez-Lazalde, José, Ángeles-Pérez, Gregorio, de los Santos-Posadas, Hector, Hernández-Stefanoni, José, Valdez-Hernández, Juan, Pérez-Rodríguez, Paulino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tree beta-diversity denotes the variation in species composition at stand level, it is a key indicator of forest degradation, and is conjointly required with alpha-diversity for management decision making but has seldom been considered. Our aim was to map it in a continuous way with remote sensing technologies over a tropical landscape with different disturbance histories. We extracted a floristic gradient of dissimilarity through a non-metric multidimensional scaling ordination based on the ecological importance value of each species, which showed sensitivity to different land use history through significant differences in the gradient scores between the disturbances. After finding strong correlations between the floristic gradient and the rapidEye multispectral textures and LiDAR-derived variables, it was linearly regressed against them; variable selection was performed by fitting mixed-effect models. The redEdge band mean, the Canopy Height Model, and the infrared band variance explained 68% of its spatial variability, each coefficient with a relative importance of 49%, 32.5%, and 18.5% respectively. Our results confirmed the synergic use of LiDAR and multispectral sensors to map tree beta-diversity at stand level. This approach can be used, combined with ground data, to detect effects (either negative or positive) of management practices or natural disturbances on tree species composition.
ISSN:1999-4907
1999-4907
DOI:10.3390/f10050419