Uniform Convexity in Variable Exponent Sobolev Spaces
We prove the modular convexity of the mixed norm Lp(ℓ2) on the Sobolev space W1,p(Ω) in a domain Ω⊂Rn under the sole assumption that the exponent p(x) is bounded away from 1, i.e., we include the case supx∈Ωp(x)=∞. In particular, the mixed Sobolev norm is uniformly convex if 1
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2023-11, Vol.15 (11), p.1988 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the modular convexity of the mixed norm Lp(ℓ2) on the Sobolev space W1,p(Ω) in a domain Ω⊂Rn under the sole assumption that the exponent p(x) is bounded away from 1, i.e., we include the case supx∈Ωp(x)=∞. In particular, the mixed Sobolev norm is uniformly convex if 1 |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym15111988 |