Global Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources

This paper deals with p -Laplacian systems u t − div ( | ∇ u | p − 2 ∇ u ) = ∫ Ω v α ( x , t ) d x , x ∈ Ω , t > 0 , v t − div ( | ∇ v | q − 2 ∇ v ) = ∫ Ω u β ( x , t ) d x , x ∈ Ω , t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝ N , where p , q ≥ 2 , α , β ≥ 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2007-01, Vol.2007, p.312-328
Hauptverfasser: Cui, Zhoujin, Yang, Zuodong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with p -Laplacian systems u t − div ( | ∇ u | p − 2 ∇ u ) = ∫ Ω v α ( x , t ) d x , x ∈ Ω , t > 0 , v t − div ( | ∇ v | q − 2 ∇ v ) = ∫ Ω u β ( x , t ) d x , x ∈ Ω , t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝ N , where p , q ≥ 2 , α , β ≥ 1 . We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow up estimates for above p -Laplacian systems with the homogeneous Dirichlet boundary value conditions are obtained under Ω = B R = { x ∈ ℝ N : | x | < R } ( R > 0 ) . Then under appropriate hypotheses, we establish local theory of the solutions and obtain that the solutions either exist globally or blow up in finite time.
ISSN:0161-1712
1687-0425
DOI:10.1155/2007/34301