Global Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources
This paper deals with p -Laplacian systems u t − div ( | ∇ u | p − 2 ∇ u ) = ∫ Ω v α ( x , t ) d x , x ∈ Ω , t > 0 , v t − div ( | ∇ v | q − 2 ∇ v ) = ∫ Ω u β ( x , t ) d x , x ∈ Ω , t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝ N , where p , q ≥ 2 , α , β ≥ 1...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2007-01, Vol.2007, p.312-328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with p -Laplacian systems u t − div ( | ∇ u | p − 2 ∇ u ) = ∫ Ω v α ( x , t ) d x , x ∈ Ω , t > 0 , v t − div ( | ∇ v | q − 2 ∇ v ) = ∫ Ω u β ( x , t ) d x , x ∈ Ω , t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝ N , where p , q ≥ 2 , α , β ≥ 1 . We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow up estimates for above p -Laplacian systems with the homogeneous Dirichlet boundary value conditions are obtained under Ω = B R = { x ∈ ℝ N : | x | < R } ( R > 0 ) . Then under appropriate hypotheses, we establish local theory of the solutions and obtain that the solutions either exist globally or blow up in finite time. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2007/34301 |