Experimental and numerical study on gas production decline trend under ultralong-production-cycle from shale gas wells

It is of engineering interest to explore recovered shale gas composition and its effects on total gas production trend over a long-term extraction period. However, there are previous experimental studies mostly focused on short term development for small scaled cores, which is less convincing to mim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-07, Vol.13 (1), p.10726-10726, Article 10726
Hauptverfasser: Duan, Xianggang, Xu, Yingying, Xiong, Wei, Hu, Zhiming, Gao, Shusheng, Chang, Jin, Ge, Yongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is of engineering interest to explore recovered shale gas composition and its effects on total gas production trend over a long-term extraction period. However, there are previous experimental studies mostly focused on short term development for small scaled cores, which is less convincing to mimic reservoir-scaled shale production process. In addition, the previous production models mostly failed to account for comprehensive gas nonlinear effects. As a result, in this paper, to illustrate the full-life-cycle production decline phenomenon for shale gas reservoir, dynamic physical simulation was performed for more than 3433 days to simulate shale gas transport out of the formations over a relatively long production period. Moreover, a five-region seepage mathematical model was then developed and was subsequently validated by the experimental results and shale well production data. Our findings show that for physical simulation, both the pressure and production declined steadily at an annual rate of less than 5%, and 67% of the total gas in the core was recovered. These test data supported earlier finding that shale gas is of low flow ability and slow pressure decline in the shale matrices. The production model indicated that free gas accounts for the majority of recovered shale gas at the initial stage. Based on a shale gas well example, free gas extraction makes up 90% of produced total gas. The adsorbed gas constitutes a primary gas source during the later stage. Adsorbed gas contributes more than 50% of the gas produced in the seventh year. The 20-year-cumulative adsorbed gas makes up 21% of the EUR for a single shale gas well. The results of this study can provide a reference for optimizing production systems and adjusting development techniques for shale gas wells throughout the combinations of mathematical modeling and experimental approaches.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-37244-4