β-Cyclodextrin capped ZnS nanoparticles for CER-assisted colorimetric and spectrophotometric detection of Pb2⁺, Cu2⁺, and Hg2⁺ in an aqueous solution
Herein, simple, low-cost, and room-temperature synthesis of beta-cyclodextrin (β-CD) stabilized zinc sulfide nanoparticle (ZnS NP) through the chemical precipitation method has been reported for cation exchange reaction (CER) based colorimetric sensing of Pb2+, Cu2+, and Hg2+. Formation of β-CD stab...
Gespeichert in:
Veröffentlicht in: | Heliyon 2023-11, Vol.9 (11), p.e21850-e21850, Article e21850 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, simple, low-cost, and room-temperature synthesis of beta-cyclodextrin (β-CD) stabilized zinc sulfide nanoparticle (ZnS NP) through the chemical precipitation method has been reported for cation exchange reaction (CER) based colorimetric sensing of Pb2+, Cu2+, and Hg2+. Formation of β-CD stabilized ZnS NPs (ZnS@β-CD) was verified by physicochemical characterization techniques such as XRD, XPS, FE-SEM, and TEM. ZnS@β-CD NPs showed color change selectively for the metal ions Pb2⁺, Cu2⁺, and Hg2⁺ among the various metal ions including Sn2⁺, Cr³⁺, Mn2⁺, Fe³⁺, Co2⁺, Ni2⁺, and Cd2⁺. The solubility product of reactants and the transformed products are the reason for selective CER of ZnS@β-CD NPs towards Pb2⁺, Cu2⁺, and Hg2⁺ ions. ZnS@β-CD NPs dispersion revealed rapid color change from white to orange, black, and bright yellow on the addition of higher concentrations of Pb2⁺, Cu2⁺, and Hg2⁺ respectively. This color change is due to the formation of complete CER-transformed nanostructures such as PbS, CuS, and HgS in higher concentrations (10⁻1- 10⁻³ M) of corresponding metal ions. The partial CER altered products Zn1−x,PbxS, Zn1−xCuxS and Zn1−xHgxS were detected due to the appearance of pale color in the lower metal ions concentrations of 10⁻⁴ - 10⁻⁶ M. This CER assisted transformation was also monitored through spectrophotometric methods. Moreover, infrared spectroscopic analysis was used to testify the structure of CER transformed product. The synthesized ZnS@β-CD NPs act as an efficient CER-based sensor for distinguishing and determining Pb2⁺, Cu2⁺, and Hg2⁺ at different level concentrations in the aqueous solution.
A simple chemical precipitation method has been reported for synthesizing β-cyclodextrin stabilized ZnS nanoparticles. These nanoparticles showed efficient CER-assisted selectivity and sensitivity to the different Pb2⁺, Cu2⁺, and Hg2⁺ metal ions concentrations. UV–Visible spectrophotometric and colorimetric methods were used to assess the metal sensor ability of ZnS@β-CD. [Display omitted] |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e21850 |