Topographic Steering of the Upper Arctic Ocean Circulation by Deep Flows

Dynamically, the Arctic Ocean is characterised by the presence of closed f/H contours, where f is the Coriolis parameter and H the depth. On closed f/H contours, a net integrated surface wind stress can theoretically drive relatively strong near-bottom flows. Nevertheless, the Rossby number of the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tellus. Series A, Dynamic meteorology and oceanography Dynamic meteorology and oceanography, 2024-11, Vol.76 (1), p.206-226
Hauptverfasser: Nilsson, Johan, Kallmyr, Jan-Adrian H., Isachsen, Pål Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamically, the Arctic Ocean is characterised by the presence of closed f/H contours, where f is the Coriolis parameter and H the depth. On closed f/H contours, a net integrated surface wind stress can theoretically drive relatively strong near-bottom flows. Nevertheless, the Rossby number of the large-scale time-mean flow in the Arctic Ocean is estimated to be small, implying that the near-bottom flow should essentially be aligned with the f/H contours. Observations indicate that the time-mean surface flow also tends to follow the f/H contours, which in the Arctic are essentially controlled by H. To examine mechanisms that can organise the Arctic Ocean surface flow along the topography, we use a two-layer large-scale geostrophic model on an f-plane (exploiting that f/H variations are dominated by depth variations). The effect of time-dependent baroclinic eddies is represented as an eddy diffusion of the upper-layer thickness. We study how wind forcing, stratification, eddy diffusivity and bottom friction affect the topographic steering of the time-mean surface flow, introducing relevant non-dimensional parameters. The analyses suggest that the Arctic Ocean is in a regime where strong along-isobath near-bottom flows can align the buoyancy field and, thereby, the surface currents with the topography. We then discuss the model results in relation to satellite-derived surface currents in the Arctic Ocean and briefly consider additional mechanisms that can align surface flows with the topography.
ISSN:1600-0870
0280-6495
1600-0870
DOI:10.16993/tellusa.4072