The Influence of Flow Rates on Pressure Fluctuation in the Pump Mode of Pump-Turbine with Splitter Blades

This paper takes a pump-turbine as the research subject and, based on the Computational Fluid Dynamics (CFD) numerical method and combined with test data, investigates the pressure fluctuation characteristics in the pump mode and analyzes the pressure fluctuation characteristics at 0.75 Qd, 1.0 Qd a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-10, Vol.10 (19), p.6752
Hauptverfasser: Huang, Ping, Xiao, Yajing, Zhang, Jinfeng, Cai, Haikun, Song, Haiqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper takes a pump-turbine as the research subject and, based on the Computational Fluid Dynamics (CFD) numerical method and combined with test data, investigates the pressure fluctuation characteristics in the pump mode and analyzes the pressure fluctuation characteristics at 0.75 Qd, 1.0 Qd and 1.25 Qd when the guide vane opening is 17.5°. The results showed that the protruding frequencies of pressure fluctuation in the bladeless region were mainly 5 fn, 10 fn and 20 fn, and the main frequencies in the runner area and near the outlet wall of the draft tube were 16 fn and 5 fn, respectively. At different heights for the guide vanes, the pressure fluctuation in the bladeless region had significant differences, and the pressure fluctuation near the bottom ring was the most intense. The amplitude of the rotor–stator interaction frequency continuously attenuates from the bladeless region to the outlet of the stay vanes, and the amplitude attenuation of each frequency is mainly concentrated in the area of the guide vanes. In this paper, the influence of different flow rates on the pressure fluctuation in the pump mode is analyzed, which provides a theoretical reference for the stability and further study of pump-turbines.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10196752