Cognitive Modeling of Task Switching in Discretionary Multitasking Based on the ACT-R Cognitive Architecture

Discretionary multitasking has emerged as a prevalent and important domain in research on human–computer interaction. Studies on modeling based on cognitive architectures such as ACT-R to gain insight into and predict human behavior in multitasking are critically important. However, studies on ACT-R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021, Vol.11 (9), p.3967
Hauptverfasser: Oh, Hyungseok, Yun, Yongdeok, Myung, Rohae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discretionary multitasking has emerged as a prevalent and important domain in research on human–computer interaction. Studies on modeling based on cognitive architectures such as ACT-R to gain insight into and predict human behavior in multitasking are critically important. However, studies on ACT-R modeling have mainly focused on concurrent and sequential multitasking, including scheduled task switching. Therefore, in this study, an ACT-R cognitive model of task switching in discretionary multitasking was developed to provide an integrated account of when and how humans decide on switching tasks. Our model contains a symbolic structure and subsymbolic equations that represent the cognitive process of task switching as self-interruption by the imposed demands and a decision to switch. To validate our model, it was applied to an illustrative dual task, including a memory game and a subitizing task, and the results were compared with human data. The results demonstrate that our model can provide a relatively accurate representation, in terms of task-switching percent just after the subtask, the number of task-switching during the subtask, and performance time depending on the task difficulty level; it exhibits enhanced performance in predicting human behavior in multitasking and demonstrates how ACT-R facilitates accounts of voluntary task switching.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11093967