Machine Learning-Based Prediction Models of Acute Respiratory Failure in Patients with Acute Pesticide Poisoning

The prognosis of patients with acute pesticide poisoning depends on their acute respiratory condition. Here, we propose machine learning models to predict acute respiratory failure in patients with acute pesticide poisoning using a decision tree, logistic regression, and random forests, support vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-12, Vol.10 (24), p.4633
Hauptverfasser: Kim, Yeongmin, Chae, Minsu, Cho, Namjun, Gil, Hyowook, Lee, Hwamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prognosis of patients with acute pesticide poisoning depends on their acute respiratory condition. Here, we propose machine learning models to predict acute respiratory failure in patients with acute pesticide poisoning using a decision tree, logistic regression, and random forests, support vector machine, adaptive boosting, gradient boosting, multi-layer boosting, recurrent neural network, long short-term memory, and gated recurrent gate. We collected medical records of patients with acute pesticide poisoning at the Soonchunhyang University Cheonan Hospital from 1 January 2016 to 31 December 2020. We applied the k-Nearest Neighbor Imputer algorithm, MissForest Impuer and average imputation method to handle the problems of missing values and outliers in electronic medical records. In addition, we used the min–max scaling method for feature scaling. Using the most recent medical research, p-values, tree-based feature selection, and recursive feature reduction, we selected 17 out of 81 features. We applied a sliding window of 3 h to every patient’s medical record within 24 h. As the prevalence of acute respiratory failure in our dataset was 8%, we employed oversampling. We assessed the performance of our models in predicting acute respiratory failure. The proposed long short-term memory demonstrated a positive predictive value of 98.42%, a sensitivity of 97.91%, and an F1 score of 0.9816.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10244633