Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility
An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation inf...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-10, Vol.29 (20), p.4927 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) confirmed the presence of Fn on the surfaces. The Fn monolayer attached to the SAM was found to be stable under fluid shear stress. Deconvolution of the Fn amide I band indicated that the secondary structure of Fn changes significantly upon immobilization to the SAM-functionalized metal substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed that the spacing between Fn molecules on a modified commercial stent surface is approximately 66 nm, which has been reported to be the most appropriate spacing for cell/surface interactions. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29204927 |