Extracellular Vesicles in Lung Cancer: Bystanders or Main Characters?

Lung cancer still represents the main cause of cancer death worldwide. The poor survival is mainly related to the diagnosis which is often obtained in advanced stages when the disease is unresectable and characterized by the worst prognosis. Only in the last decades have great discoveries led to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology (Basel, Switzerland) Switzerland), 2023-02, Vol.12 (2), p.246
Hauptverfasser: Tinè, Mariaenrica, Biondini, Davide, Damin, Marco, Semenzato, Umberto, Bazzan, Erica, Turato, Graziella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lung cancer still represents the main cause of cancer death worldwide. The poor survival is mainly related to the diagnosis which is often obtained in advanced stages when the disease is unresectable and characterized by the worst prognosis. Only in the last decades have great discoveries led to the development of new therapies targeted to oncogenes and to boost the host immune response against the tumor. Tumor identification and molecular/immunological characterization rely on bioptic samples which represent the gold standard for diagnosis. Nonetheless, less invasive procedures providing small samples will be more and more common in the future. Extracellular vesicles (EV), submicron particles released by any cell type, are candidates for diagnostic and prognostic biomarkers. EV are mediators of intercellular communication and can convey cytokines, miRNAs, antigens, and many other factors of tumorigenesis. This review summarizes the most appealing findings on lung-cancer-related EV, debating the evidence on circulating versus airway EV as potential biomarkers in disease management and the main studies on the role of these particles on lung cancer pathogenesis. Overall, the available results point toward a wide range of possible applications, supported by the promising achievements of genotyping on BAL fluid EV and proteomic analysis on pleural effusion EV. Nonetheless, the study of lung EV is still affected by remarkable methodological issues, especially when in vitro evidence is translated into humans. Whether EV still represent an "information fog" or can be useful in lung cancer management will be discussed, with possible hints on how to improve their usage.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology12020246