Auditing the audits: evaluating methodologies for social media recommender system audits

Through a simulated Twitter-like platform designed to optimize user engagement and grounded in authentic behavioral data, this study evaluates methodologies for auditing social media recommender systems. Our analysis focuses on the impact of key parameters in sock-puppet audits, the number of friend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Network Science 2024-09, Vol.9 (1), p.59-20, Article 59
Hauptverfasser: Bouchaud, Paul, Ramaciotti, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through a simulated Twitter-like platform designed to optimize user engagement and grounded in authentic behavioral data, this study evaluates methodologies for auditing social media recommender systems. Our analysis focuses on the impact of key parameters in sock-puppet audits, the number of friends and session length, on audit outcomes. Additionally, we investigate the algorithmic amplification of political content across different levels of granularity, segmenting users based on political leanings and considering multiple political dimensions beyond declared affiliations. Our findings underscore the necessity of employing realistic parameter settings in audits and highlight the importance of nuanced political segmentation. Amid increasing regulatory scrutiny, this research contributes to enhancing methodologies for auditing social media platforms.
ISSN:2364-8228
2364-8228
DOI:10.1007/s41109-024-00668-6