1D-Concatenate based channel estimation DNN model optimization method
In order to improve the channel estimation accuracy of DNN model in wireless communication, a DNN model optimization method based on 1D-Concatenate was proposed.In this method, Concatenate performs one-dimensional data transformation, the DNN model was introduced by hopping connection, the gradient...
Gespeichert in:
Veröffentlicht in: | Dianxin Kexue 2023-04, Vol.39, p.71-86 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to improve the channel estimation accuracy of DNN model in wireless communication, a DNN model optimization method based on 1D-Concatenate was proposed.In this method, Concatenate performs one-dimensional data transformation, the DNN model was introduced by hopping connection, the gradient disappearance problem was suppressed, and 1D-Concatenate was used to restore the data features lost during network training to improve the accuracy of DNN channel estimation.In order to verify the effectiveness of the optimization method, a typical DNN-based wireless communication channel estimation model was selected for comparative simulation experiments.Experimental results show that the estimated gain of the existing DNN model can be increased by 77.10% by the proposed optimization method, and the channel gain can be increased by up to 3 dB under high signal-to-noise ratio.This optimization method can effectively improve the channel estimation accuracy of DNN model in wireless communication, especially the impr |
---|---|
ISSN: | 1000-0801 |