1D-Concatenate based channel estimation DNN model optimization method

In order to improve the channel estimation accuracy of DNN model in wireless communication, a DNN model optimization method based on 1D-Concatenate was proposed.In this method, Concatenate performs one-dimensional data transformation, the DNN model was introduced by hopping connection, the gradient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dianxin Kexue 2023-04, Vol.39, p.71-86
Hauptverfasser: Min LU, Zehao QIN, Zhihui CHEN, Min ZHANG, Guangxue YUE
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to improve the channel estimation accuracy of DNN model in wireless communication, a DNN model optimization method based on 1D-Concatenate was proposed.In this method, Concatenate performs one-dimensional data transformation, the DNN model was introduced by hopping connection, the gradient disappearance problem was suppressed, and 1D-Concatenate was used to restore the data features lost during network training to improve the accuracy of DNN channel estimation.In order to verify the effectiveness of the optimization method, a typical DNN-based wireless communication channel estimation model was selected for comparative simulation experiments.Experimental results show that the estimated gain of the existing DNN model can be increased by 77.10% by the proposed optimization method, and the channel gain can be increased by up to 3 dB under high signal-to-noise ratio.This optimization method can effectively improve the channel estimation accuracy of DNN model in wireless communication, especially the impr
ISSN:1000-0801