Developing and Evaluating Composites Based on Plantation Eucalyptus Rotary-cut Veneer and High-density Polyethylene Film as Novel Building Materials

To achieve value-added utilizations of plantation timbers, eucalyptus veneer/high-density polyethylene film composites were prepared, with process-factors (PF) (hot-pressing temperature, HT; hot-pressing duration, HD; hot-pressing pressure, HP; HDPE-film content, HC) and composite-properties (CP) (w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2016-05, Vol.11 (2), p.3318-3331
Hauptverfasser: Song, Wei, Wei, Wenbang, Ren, Congrong, Zhang, Shuangbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To achieve value-added utilizations of plantation timbers, eucalyptus veneer/high-density polyethylene film composites were prepared, with process-factors (PF) (hot-pressing temperature, HT; hot-pressing duration, HD; hot-pressing pressure, HP; HDPE-film content, HC) and composite-properties (CP) (water-resistant bonding-strength, BS; modulus of rupture, MOR; modulus of elasticity, MOE) investigated. According to thermal analyses, 140 to 180 °C was appropriate for HT. Based on statistical analyses, HD was easier to affect CP, while MOE was easier to be affected by PF. Quantitative relationships between PF and CP were determined by the neural-network (ANN) modeling. In ANN simulation surveys, CP displayed Gaussian distributions (R2 > 0.9) when PF changed in current ranges, with positive correlations between BS and MOR (R2 ≈ 0.5). Combining ANN and the genetic-algorithm, optimal processes (HT, 160 °C; HD, 50 s/mm; HP, 1.3 MPa; HC, 6 layers) were found, and optimal results (BS, 1.30 MPa; MOR, 86.94 MPa; MOE, 8.33 GPa) were comparable to various reported poplar-plywoods. Microscopic images demonstrated that composite interfaces were formed by the mechanical interlocking. The optimal BS attained Chinese standards for water-resistant plywoods, so proposed composites can serve as water-resistant and formaldehyde-free building materials for furniture and interior design.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.11.2.3318-3331