Improved coarse-graining methods for two dimensional tensor networks including fermions
A bstract We show how to apply renormalization group algorithms incorporating entanglement filtering methods and a loop optimization to a tensor network which includes Grassmann variables which represent fermions in an underlying lattice field theory. As a numerical test a variety of quantities are...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2023-01, Vol.2023 (1), p.24-22, Article 24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We show how to apply renormalization group algorithms incorporating entanglement filtering methods and a loop optimization to a tensor network which includes Grassmann variables which represent fermions in an underlying lattice field theory. As a numerical test a variety of quantities are calculated for two dimensional Wilson-Majorana fermions and for the two flavor Gross-Neveu model. The improved algorithms show much better accuracy for quantities such as the free energy and the determination of Fisher’s zeros. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP01(2023)024 |