Improved coarse-graining methods for two dimensional tensor networks including fermions

A bstract We show how to apply renormalization group algorithms incorporating entanglement filtering methods and a loop optimization to a tensor network which includes Grassmann variables which represent fermions in an underlying lattice field theory. As a numerical test a variety of quantities are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-01, Vol.2023 (1), p.24-22, Article 24
Hauptverfasser: Asaduzzaman, Muhammad, Catterall, Simon, Meurice, Yannick, Sakai, Ryo, Toga, Goksu Can
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We show how to apply renormalization group algorithms incorporating entanglement filtering methods and a loop optimization to a tensor network which includes Grassmann variables which represent fermions in an underlying lattice field theory. As a numerical test a variety of quantities are calculated for two dimensional Wilson-Majorana fermions and for the two flavor Gross-Neveu model. The improved algorithms show much better accuracy for quantities such as the free energy and the determination of Fisher’s zeros.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2023)024