Non‐linear dynamic behaviour modelling for broadband power amplifiers based on deep convolution generative adversarial networks

This letter presents a non‐linear dynamic behaviour model for characterising the broadband power amplifiers (PAs) by using deep convolution generative adversarial networks (DCGAN). The DCGAN structure is based on the convolution neural network model and combines the generative adversarial networks t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2021-03, Vol.57 (7), p.300-302
Hauptverfasser: Su, Rina, Liu, Taijun, Ye, Yan, Xu, Gaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents a non‐linear dynamic behaviour model for characterising the broadband power amplifiers (PAs) by using deep convolution generative adversarial networks (DCGAN). The DCGAN structure is based on the convolution neural network model and combines the generative adversarial networks to improve its linearisation ability of the digital predistortion. The DCGAN contains a generation model and a discriminant model. It imports convolution with steps and deconvolution into the structure, respectively, which makes the accuracy of the power amplifier non‐linear model to improve further. For verification, a 5G NR test signal with 100 MHz bandwidth is employed for testing a Doherty RF‐PA that operates at 1800 MHz. The experimental results illustrate that the normalised mean square error value is at least 12 dB higher than the traditional models, and the out‐of‐band suppression of the DCGAN predistorter can be up to 15 dB better than other models.
ISSN:0013-5194
1350-911X
DOI:10.1049/ell2.12107