High Energetic Gamma Attenuating from a Neutron Field Using a Lead Free Reinforced Composite

Epoxy resin as a thermoset polymer has a suitable thermal resistance with high mechanical properties. In addition, the resin exhibits good continuum presentation for both neutron and gamma beams. Consequantly, it is the primary concern in the nuclear industry. In a neutron shielding, energetic secon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:مجله علوم و فنون هسته‌ای 2016-05, Vol.37 (1), p.23-29
Hauptverfasser: S.P Shirmardi, R Adeli, S.J Ahmadi, S Mazinani
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epoxy resin as a thermoset polymer has a suitable thermal resistance with high mechanical properties. In addition, the resin exhibits good continuum presentation for both neutron and gamma beams. Consequantly, it is the primary concern in the nuclear industry. In a neutron shielding, energetic secondary gamma products are unavoidable. For attenuating these gamma rays, the elements with high atomic number in the polymeric matrix are inevitably used. Because of various problems of lead shield, studies are inclined to the lead free shielding. In this investigation and, by using Monte Carlo method, the ability of secondary gamma attenuating was studied on a polymeric shielding based on reinforced epoxy with different weight percentages of 5, 10 and 20 of tungsten oxide and lead oxide without any neutron poisons. The results show that by the same weight percentage, the reinforced composite shield with tungsten oxide could afford better shielding performance. The more increase in the weight percentage of the reinforced material, in addition to an increase in the weight of the shield, reduce the ability of shielding performance.
ISSN:1735-1871
2676-5861