Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules

Transfer of molecular chirality to supramolecular chirality at nanoscale and microscale by chemical self-assembly has been studied intensively for years. However, how such molecular chirality further transfers to the macroscale along the same path remains elusive. Here we reveal how the chirality fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-09, Vol.9 (1), p.3808-8, Article 3808
Hauptverfasser: Yang, Yang, Liang, Jie, Pan, Fei, Wang, Zhen, Zhang, Jianqi, Amin, Kamran, Fang, Jin, Zou, Wenjun, Chen, Yuli, Shi, Xinghua, Wei, Zhixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transfer of molecular chirality to supramolecular chirality at nanoscale and microscale by chemical self-assembly has been studied intensively for years. However, how such molecular chirality further transfers to the macroscale along the same path remains elusive. Here we reveal how the chirality from molecular level transfers to macroscopic level via self-assembly. We assemble a macrostripe using enantiomeric camphorsulfonic acid (CSA)-doped polyaniline with hierarchical order. The stripe can twist into a single-handed helical ribbon via helical self-motion. A multi-scale chemo-mechanical model is used to elucidate the mechanism underlying its chirality transfer and induction. The molecular origin of this macroscopic helical chirality is verified. Results provide a comprehensive understanding of hierarchical chirality transfer and helical motion in self-assembled materials and even their natural analogues. The stripe exhibits disparate actuation behaviour under stimuli of enantiomeric amines and integrating such chiral perception with helical self-motion may motivate chiral biomimetic studies of smart materials. Chirality transfer by chemical self-assembly has been studied intensively for years but chirality transfers along the same path remains elusive. Here the authors use a multiscale chemo-mechanical model to elucidate the mechanism underlying the chirality transfer via self-assembly in hierarchical camphorsulfonic acid doped polyaniline.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-06239-5